Field-effect transistors built from all two-dimensional material components.
نویسندگان
چکیده
We demonstrate field-effect transistors using heterogeneously stacked two-dimensional materials for all of the components, including the semiconductor, insulator, and metal layers. Specifically, MoS2 is used as the active channel material, hexagonal-BN as the top-gate dielectric, and graphene as the source/drain and the top-gate contacts. This transistor exhibits n-type behavior with an ON/OFF current ratio of >10(6), and an electron mobility of ∼33 cm(2)/V·s. Uniquely, the mobility does not degrade at high gate voltages, presenting an important advantage over conventional Si transistors where enhanced surface roughness scattering severely reduces carrier mobilities at high gate-fields. A WSe2-MoS2 diode with graphene contacts is also demonstrated. The diode exhibits excellent rectification behavior and a low reverse bias current, suggesting high quality interfaces between the stacked layers. In this work, all interfaces are based on van der Waals bonding, presenting a unique device architecture where crystalline, layered materials with atomically uniform thicknesses are stacked on demand, without the lattice parameter constraints. The results demonstrate the promise of using an all-layered material system for future electronic applications.
منابع مشابه
A Unified Charge-current VS Compact Model for Graphene Transistors Applicable in Analog Circuit Simulations
With its rich physics, graphene has properties that make it a viable candidate for implementing electronic devices. For example, graphene as a two-dimensional material has a limited phase space for scattering of electrons; hence, the electrons in graphene can have a long MFP–a property that can be utilized to build high frequency devices , . However, to design and simulate electronic circuits b...
متن کاملA Unified Charge-current VS Compact Model for Graphene Transistors Applicable in Analog Circuit Simulations
With its rich physics, graphene has properties that make it a viable candidate for implementing electronic devices. For example, graphene as a two-dimensional material has a limited phase space for scattering of electrons; hence, the electrons in graphene can have a long MFP–a property that can be utilized to build high frequency devices , . However, to design and simulate electronic circuits b...
متن کاملCurrent crowding mediated large contact noise in graphene field-effect transistors
The impact of the intrinsic time-dependent fluctuations in the electrical resistance at the graphene-metal interface or the contact noise, on the performance of graphene field-effect transistors, can be as adverse as the contact resistance itself, but remains largely unexplored. Here we have investigated the contact noise in graphene field-effect transistors of varying device geometry and conta...
متن کاملCorrigendum: Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model
Owing to the difficulties associated with substitutional doping of low-dimensional nanomaterials, most field-effect transistors built from carbon nanotubes, two-dimensional crystals and other low-dimensional channels are Schottky barrier MOSFETs (metal-oxide-semiconductor field-effect transistors). The transmission through a Schottky barrier-MOSFET is dominated by the gate-dependent transmissio...
متن کاملTwo-dimensional Modeling of Depletion Layer of MESFET GaAs
A two-dimensional numerical analysis is presented to investigate the field effect transistor characteristics, the influence of the geometry of the component like distance between the gate and drain, or between gate and source. All simulations revealed the existence of a high electric field region near the gate contact, who create a depopulated zone around the gate, but the preceding studies hav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 8 6 شماره
صفحات -
تاریخ انتشار 2014